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Abstract-The transient elastodynamic fields and the stress intensity factor of a semi-infinite inter­
face crack lying between dissimilar anisotropic half planes are analyzed. The crack is subjected to
a pair of suddenly-applied anti-plane concentrated point loadings on its faces. at a distance I away
from the crack tip. The problem is first transformed into one with the interface crack lying between
dissimilar isotropic half planes by a transformation of relevant coordinates and parameters. The
crucial steps in the analysis are then the direct application of integral transforms together with the
Wiener-Hopf technique and the Cagniard-de Hoop method. which were previously believed not
to be appropriate. Exact expressions are obtained for the resulting mode-III stress intensity factors.
/(111' and radiated stress fields as functions of time. The numerical results are presented for both
anti-symmetric and symmetric loadings. The results show that /(111 is almost constant with time. but
experiences discontinuity at a time t .. s:l. which is the arrival time of the cylindrical wave emitted
from the point loading of the slower medium on the crack tip. Moreover. /(111 jumps to the
appropriate st"tic value (at I '" s~/) for the case of anti-symmetric loading but not for the ease of
symmetric lo'lding. The results also show that the transient r:ldi:lted stress component tid! has fewer
discontinuiti~'S and fewer singul'lrities than other stress components. On the other h:lnd. the order
of magnitude of tid' is one less than that of ti".

I. INTRODUCTION

In recent years, the increasing uses of composites have generated considerable research
efforts in the modeling, testing and analysis of laminated media. These materials differ from
traditional isotropic homogeneous materials in their anisotropy and multi-layeredness.
Contiguous layers of composite laminates, however, may not be properly adhered, and the
interfaces may contain flaws which can lead to serious degradation in load-carrying capacity.

In this paper we are interested in the anti-plane transient elastodynamic responses and
stress intensity factors of a semi-infinite crack lying along the interface of an anisotropic
bimaterial. The crack faces are suddenly loaded by a pair of concentrated anti-plane point
forces which are located at a distance of "away from the crack tip. The materials are
assumed to possess certain material symmetry and the crack plane coincides with one of
the planes of material symmetry, so that the in-plane and the anti-plane motions are not
coupled. Stresses in such materials due to anti-plane shear deformations are described by
three elastic constants (three shear moduli rather than one as for isotropic solids). Hence,
the wavefronts of anti-plane shear waves are ellipses rather than circles. The question of
elliptical anisotropy has been discussed in some detail by Helbig (1983). For a recent review
on wave motions in anisotropic media, refer to Crampin's work (1981).

It is well known that in general the near-tip stresses of an in-plane interface crack
possess oscillatory singularities if the crack faces are assumed traction free (England, 1965).
Such oscillatory singularities lead to the contradiction that the crack faces interpenetrate
each other. In contrast to the in-plane cases, the near-tip stresses ofanti-plane shear interface
cracks exhibit an inverse square-root singularity as for cracks in homogeneous solids and
the contradiction of the crack faces' interpenetration does not appear (Sih and Chen, 198 I).
Consequently, the stress intensity factor of the anti-plane interface crack is well defined.

The analyses of the paper are based first on the observation that anti-plane shear
deformations in an anisotropic solid can be deduced from the corresponding deformations
of an isotropic solid by a transformation of relevant coordinates and parameters. The
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corresponding relations have also been noted by several researchers. e.g. Markenscoff and
Si (1984), Achenbach and Kuo (1986), Ma (1989) and Wu and Chiu (1989). In particular.
Markenscoff and Ni (1984) and Achenbach and Kuo (1986) analyzed the elastodynamic
responses of a homogeneous anisotropic solid and a cracked homogeneous transversely­
isotropic half plane, respectively. Ma (1989) and Wu and Chiu (1989), on the other hand,
were concerned with static anisotropic composite wedges and the static interface crack,
respectively. Based on this observation, analyses of the interface crack between dissimilar
anisotropic solids are converted into that between dissimilar isotropic solids.

In some respects, the present problem can be regarded as a mode-III interface crack
analogue of those considered by Freund (1974) (hereafter referred to as problem A) and
Brock (1982), where mixed mode-I-II cracks in homogeneous isotropic unbounded media
were considered. Attributed to the existence of the characteristic length in loading, it
was long believed that the Wiener-Hopf technique could not be directly applied. Clever
superpositions were then proposed by Freund (1974) and adopted by Brock (1982). In their
analyses, the original problem was considered as a superposition of two of Lamb's problems
and a superposition problem. The superposition problem concerned an unbounded solid
containing a semi-infinite crack. Ahead of the crack tip, the solid was subjected to dis­
placement discontinuities which were equal in magnitude but opposite in sign to the relative
displacements of the two half-plane surfaces arising from Lamb's problems. Two of Lamb's
problems and the superposition problem possessed no fixed characteristic length and were
then solved by the Wiener-Hopf technique. Freund (1976) again investigated problem A
in a review article as an illustration of the dynamic weighting function method.

In this article, we directly apply the Wiener-Hopf technique as if there were no
characteristic length. The crucial steps in the analysis are integral transforms together
with the direct application of Wiener-Hopf technique and Cagniard de Hoop method. A
summary of the Wiener-Hopf technique and Cagniard-de Hoop method can be found in
Achenbach's book (1973). It is observed that the charaeteristil: length in loading introdul:ed
an exponential term in the Wiener-Hopf eq uation. The sum splitting of the fundion, which
exhibits an exponential behavior, is one of the most important steps in the analysis. This
method of solution has potential with regard to the mixed mode-I 1[ l:rad problems with
characteristic length in loading. It is fair to say that the superposition argument proposed
by Freund (1974) offers better physical interpretation to the solution, while the current
solution procedure is much more straightforward and more elegant.

It is of interest that the problem of mode-III crack propagation along the interface of
two dissimilar isotropic half planes was considered by Brock and Achenbach (1973) where
the crack was loaded by an anti-plane transient wave, and henl:e the problem contained no
fixed characteristic length. The anti-plane response of a cracked homogeneous orthotropic
strip was analyzed by Georgiadis (1986), who considered the steady-state crack problem
and the characteristic length possessed in geometry but not in loading.

2. CORRESPONDENCE RELATION

Two-dimensional anti-plane wave motions of homogeneous, anisotropic, Iinearly­
elastic solids are governed by (Crampin, 1981)

(I)

where Ii'(.i,'y, t) is the out-of-plane displacement, CiI, (i, k = 4, 5) are elastic moduli and p
is the mass density of the material. The .ii-plane has been assumed to coincide with one of
the planes of material symmetry, such that the in-plane and anti-plane motions are not
coupled. The superposed hat indicates that the quantities are associated with the anisotropic
solid. The relevant stress components are
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Introduce a coordinate transformation
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(2)

(3)

(4)

(5)

(6)

where JJ = (cHcss-ds)1/2. The positiveness of(cHcss-c~s) is guaranteed by the positive
definite of strain energy. Equations (4)-(6) and the chain rule of differentiation reduce (I)
to the standard wave equation

(7)

(8)

The const,tnt «~44/Jt) is the Jacobian of the coordinate transformation. Equation (7) suggests
that it is possible to deduce the anti-plane shear solution for an anisotropic solid from a
corresponding solution for an isotropic solid by a transformation of relevant parameters.
The corresponding isotropic solid is characterized by the equivalent shear modulus JJ and
mass density p.

It is easily verified from (2)-(6) that the relevant displacement and stress components
in a physical anisotropic solid are related to those in the corresponding isotropic solid by

",(x.y.t) = W(X.y,l) (9)

(10)

(II)

where the quantities without a superposed hat are associated with the corresponding
isotropic solid. and a>: = JJ(ow/ooc), oc = x. y. are the relevant shear stresses. Under the
transformation (4)-(6), straight lines making an angle 8 with the x-axis in the xy-plane
remain straight but make an angle 0 with the x-axis in the xy-plane, where the angles 8and
oare related by

h _ (CH/JJ) sinO
tan u - 0 • / ) . 0'cos + (C4$ JJ Sin

(12)

while circles in the xy-plane correspond to ellipses in the .iY-plane. In particular, the .i-axis
is mapped onto the x-axis without any stretching; the y-axis is an axis which is orthogonal
to the x-axis but not the mapping of the y-axis. If a crack lies along the line y = O• .i < 0
in the .iY-plane. it lies along the line y = 0, x < 0 in the xy-plane. Moreover, the mode-III
stress intensity factors in both the physical and corresponding transformed coordinates are
related by
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( 13)

where the stress intensity factor Kill is defined as usual by

(14)

and the definition of KIII(t) is exactly the same as that of KIII(t) in (14), except that the
quantities with a superposed hat are replaced by ones without hats. Hence if one can solve
the problems of the corresponding isotropic solid. the solution for anti-plane shear problems
involving an anisotropic solid can be obtained by appropriate substitution according to
(9)-(11) and (13).

3. INTERFACE CRACK PROBLEM

Consider anti-plane deformations of a semi-infinite interface crack lying between
dissimilar anisotropic half planes which are characterized by the elastic moduli (Cik)j' i,
k = 4. 5. and mass densities Pj' The subscript j (j = I, 2) refers to the upper and lower
media. respectively. Ahead of the crack tip the interface is perfectly welded. A Cartesian
coordinate system is defined in such a way that the only nonzero displacement is normal
to the .if-plane. and the crack lies in the line f =O• .i < O. The materials are assumed to
possess certain material symmetry and the .if-plane coincides with one of the planes of
material symmetry, such that the in-plane and the anti-plane motions arc not coupled. The
crack geometry, the dissimilar anisotropic media and the coordinate system arc shown in
Fig. I(a). Without loss of generality, one assumes that .i, < .i 2, where .i, = [PC44/(C44(~jj

-(~~j)IJI2 arc the slownesses of the rays along the .i-direction in the upper and lower
materials, respectively.

For time ( < 0 the elastic solids arc at rest. For time ( ~ O. a pair of concentrated anti­
plane shear forces in the =-direction of magnitudes F. and F2 act on the crack faces y =0 l­

and}~ = 0 -, respectively, at .i = -I. Thus the crack-face boundary conditions arc

{
-F,H«()J(.i+/), .i < O. Y= 0"

aj~(.i,f, t) = +F
2
H(t)J(i+/). i < 0, Y = 0- (15)

where H() and J() arc the Heaviside step and Dirac delta functions, respectively. Ahead
of the crack tip, the interface boundary conditions which correspond to the continuity of
displacement and traction along the welded part of the interface, along .i > 0, are

( 16)

(17)

Notice that since the materials on both of the sides of the interface are different, the fields
are no longer symmetric nor anti-symmetric with respect to y = O. even if the applied
loadings are symmetric or anti-symmetric.

"y medium 1

mlldium 2

Fig. I(a). Loading and crack geometry of the physical anisotropic bimaterial.
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4. METHODS OF SOLUTION

The problem formulated in the previous section can be transformed into an isotropic
one. and the transformations discussed in Section 2 apply. The coordinate transformation
given by (4)-(6) maps the upper and lower anisotropic half planes onto their own cor­
responding isotropic half planes. As discussed in Section 2. the interface of a physical
anisotropic bimaterial. the .i-axis. is mapped onto the interface of the corresponding iso­
tropic bimaterial. the x-axis. Consequently. the corresponding problem concerns a semi­
infinite interface crack lying along the line y = 0, x < 0, and between dissimilar isotropic
half planes which are characterized by shear moduli JJj == [(C44CSS)j-(C45)J]'/2 and mass
densities Pj == (pC44/ JJ);. The subscript j. j = 1, 2. refers to the upper and the lower media.
respectively. The crack geometry. the corresponding dissimilar isotropic media and the
transformed coordinate system as well as the wave pattern after the last wave has been
diffracted are shown in Fig. I(b). In this figure the direct waves produced by FI and F~ are
indicated by I and 2. respectively. The diffracted waves are indicated by two-digit numbers
ij (i. j = I. 2) which denote the waves in medium i resulting from the diffraction of a
disturbance produced by applied force fj.

From eqns (7) and (9), the anti-plane wave motions of the corresponding isotropic
bimaterial in the transformed coordinates are governed by the standard wave equations

(18)

where s is the slowness of the shear waves and is defined by (8). The relevant stress
component is

vw
(a,.:>; = JJ; -=.). j = 1.2.

. oy
( 19)

It is easily verified that the assumption s, < S2 implies s. < S2' From (II) and (15)-(17).
the crack-face boundary conditions in the xy-plane are

{
-F1H(/)J(:C+/). :c < 0, y = 0+

O'y:(:c,y,/) = +F
2
H(/)J(:c+/), :c < 0, y = 0-. (20)

Ahead of the crack tip, the corresponding interface boundary conditions do not change
along :c> 0, except that the quantities with superposed hats are replaced by the ones
without hats,

y

Fig. I(b). Wave pattern of the corresponding isotropic problem.
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(21 )

(22)

Let us denote further the displacement and the traction along the welded part of the interface
as W.(X, I) and q • (.t, I), respectively. The formulation given by (18)-(22) is formally
identical to that for an interface crack lying between the isotropic bimaterial. The cor­
responding crack faces are loaded by a pair of concentrated anti-plane shear forces of
magnitudes £, and £2 at (x,y) = (-1,0·) and (-1,0-), respectively, for time I ~ O. Hence
the corresponding relations (9)-(14) can transform the solution of the isotropic interface
crack problem into the anisotropic one formulated in Section 3.

Apply a one-sided Laplace transform over I, with kernel exp ( - pi), and a two-sided
Laplace transform over x, with kernel exp (-pex), to the equation of motion (18). General
solutions in the transformed domain, which are bounded as y ... + 00 (and - 00, respec­
tively), can be written as

(23)

(24)

where rl = (4 - ~ 2), j = I, 2, and A and Bare not-yet-determined arbitrary functions of
eand p. The transformed function of one-sided and two-sided Laplace transforms arc
denoted by a superposcd bar and tilde, respectively. The branch cuts of 'I, have been taken
to be from ~ -+ - 00 to -SI and from ~ = Si to ~ -+ 00, j = J. 2, such that Re ('1/) ~ 0 in
the entire cut complex ~-planc. where "Rc" denotes the real part.

From (20), the transformed shear stresses along the whole crack line, y = 0, arc

".. ". r.0 • .
(11,..),(';.O,p) = 11, --exp(p<;/), J = 1.2. P (25)

where a. is the transform of the unknown stress field, q. (x, I), and the constant e = I and
- I for medium I and 2, respectively. Because of the anticipated circular wavefronts and
the existence of the head wavefront due to the mismatched bimaterial, the wave fields along
y = 0 are zero beyond lx-II = tis,. By virtue of the theory of Laplace transform, both a.
and If.. are analytic and go to zero as I~I -+ + 00 in the half complex e-plane Re (e) > -.1',.
where I~. is the transformed unknown displacement IV. (x, t).

From (23)-(24), the transformed displacements of media I and 2 along the crack line
are

(26)

(27)

and the transformed shear stresses along the crack line are

_ F,
rJ .. + --:exp (p~/) = PJ.l2'12B, y = 0-.

p

(28)

(29)

In (26) and (27), 1[.1_ and ID2 _ are transforms of the unknown crack-face displacements,
11'1_ (x, I). 11'2 _ (x, 0, of the upper and lower crack faces, respectively. Notice that IV;_ (j = I,
2) vanishes for x > 0, and moreover, because of anticipated circular wav<:,fronts. I.~_ also
vanishes for x < - I/si-I. By virtue of the theory of Laplace transform, Ii", _ and IV2 _ are
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analytic and go to zero as 1~1 -+ x in the half complex ~-planes Re (~) < 5r respectively.
Relating transformed crack-line stresses and displacements through (26)-(29). eliminating
J•. and defining J_ == JI_-~f.Z_ which denotes the transformed crack-opening dis­
placement. one has

(30)

where

(31 )

5. WIENER-HOPF TECHNIQUE

Equation (30) has been cast into a form suitable for the application of the Wiener­
Hopf technique. Introduce a new function r*(e) by defining

r*(~) = 1'.: re~)
K

(32)

where K = (JlI+Jl2)/(J/I1l2)' The function r*(o -I as lel- 00. moreover. has neither
zero nor pole. and is single-valued in the entire complex e-plane by cuts along
-S2 < e < -SI and SI < e< S2' From the analytic function theory. therefore. r* can be
written as the product of two rcgular functions rt and r~. By directly applying the formula
of sum splitting (Noble. 1958) to In r*(~). replacing the original contour of integration by
finite contours wrapped around the lower and upper faces of an appropriate branch cut,
and then taking the exponential. one has

(33)

Notice that the functions rt(e) and r~(e) are regular at every point in the half planes
Re(e) > -51 and Re(O < SI. respectively. Moreover. rHe) [r~(e)l has a branch cut
along -52 < ~ < -51 (Sl < e < 52) as r*(o in the left (right) half of the e-plane. It is of
interest that the quotient splitting of reo was also studied by Ament (1954) using a
complicated change of variable and followed by a simple inspection.

Equation (30) can then be arranged in the form

(34)

D( " fl- (FI F2 ) (p=/)c;)=-* ---- exp l, .r _ IlIYI Jl2Y2
(35)

Since the function D(e) is analytic and goes to zero as lei - 00 in the strip
-51 < Re (e) < 5" it can be expressed as the sum of the two functions D.(e) and D_(e),
and the formula of sum splitting directly applies
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(36)

(37)

(38)

(39)

Functions D+(~) and D _(~) are regular at every point in the half complex ~-planes of
Re(~) > -SI and Re(~) < SI. respectively.

Equation (34) now becomes

(40)

The left-hund and right-hund sides of (40) are clearly regular in the overlapping half planes
Re(~)< s, imd Re(~) > -Sa. respectively. By analytic continuution. therefore, each side
of (40) is the unique unillytiC continuution of the other into the complementury half plune.
and both sides represent one and the same entire function. say Z. Liouville's theorem for
boul1ded entire functions allows the conclusion Z == constant. The magnitude of the con­
stunt can be obtained from order conditions on Z as I~I -+ 00. which in turn are obtained
from order conditions on the dependent field variables in the vicinity of x =O. As usual.
the near-tip stress fields and the crack-opening displacement exhibit inverse square root
and square root behaviors, respectively. with the result that Z vanishes completely. hence

(41 )

The transformed crack-line stresses are thus completely determined.
It is worthwhile mentioning that in the cases ofanti-symmetric loading, F, = - F2 == F.

the function D(~) is simplified to D.(~) as

(42)

Through careful studies on the behaviors of the functions y, + and r:. it has been concluded
that D.(~) has a branch cut along - 00 < ~ < -SI only. Since exp (p~l) is an entire function
in the whole complex ~-plane. D.(~) is then analytic in the half plane Re (~) > -SI' The
left-hand and the right-hand sides of (34) are then analytic in the overlapping half planes
Re (~) < S, and Re (~) > -SI' Hence both sides represent one and the same entire function
and it might appear that our problem has been solved. Unfortunately. the function D.(~)

is not bounded as Re (~) -+ 00 owing to the presence of the exponential term exp (p~/).

This prevents one from determining the entire function. Hence a sum splitting for D.(~) into
two regular functions. D. + and D. _. in appropriate complex halfplanes is still necessary. The
results for D. + and D. _ can be directly deduced from (36)-(39) by letting F, = - F 2 == F.
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6. STRESS INTENSITY FAcrOR

Stress intensity factors can now be concluded. Inverting the two-sided Laplace trans­
form to (41) and changing the order of integration between the integrals over the trans­
formed variable ~ and that in D+(~), one has

(43)

where

(44)

and Br is the Bromwich contour of the inverse transform. The functions G.(,,) and G2(,,),

defined in (38) and (39). are contributions from F. and F2• respectively. For x> 0, the path
Br is deformed to wrap around the lower and upper faces of the branch cut ~ < -$1. No
singularities of the integrand are crossed in the process, and the integrand meets the
conditions of Jordan's lemma. After some manipulations it yields, for x> 0,

(45)

By the Cagniard-de Hoop method, letting ,,1+~x = I and inverting the one-sided Laplace
transform by inspection. one has

Concluding from (14), (43) and (46) yields the resulting mode-III stress intensity factor as

It is of inlerest to discuss two special cases. For the cases of anti-symmetric loadings
(F , = - F2 == F), the stress intensity factors (47) can be simplified as

(48)

Notice that for time I > $2/, (48) can be evaluated analytically by complex integration in
the ,,-plane. In this case, the integral in (48) is equal to the integral taken along a closed
contour of infinitely large radius by using Cauchy's theorem. The final result for I > $21 is
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(49)

Equation (49) is exactly the appropriate static result for a pair of concentrated forces
applied to interface cracks in bimaterials as well as to cracks in homogeneous media.

In the cases where SI = S; == s, the functions f(';) and D ... (';) are simplified to

(50)

(51 )

The stress intensity factor jumps immediately from zero to the appropriate static result for
an interface crack in a bimateriaI. once waves arrive on the crack tip

(52)

7. RADIATION FIELDS

The transformed radiation stress fields are concluded from (19), (23)-(24), (28)-(29)
and (41) to be

whcre

{
(g .. ).} {9" (~)} .
( ~'~)' = 1(:) Ej(,;,p)exp(-p'/,Iyl)

(1.,: , 9" "

E (e,p) = 1[~ (I"(';)~_':!.~! -,;F c""J
I p II: r~ (.;) ,

(53)

(54)

(55)

and the subscript j (j = 1,2) refers to medium 1 (y ~ 0, t: = + I) and medium 2 (y ~ O.
t: = - I). respectively.

The stress fields in the (x. y. r) domain can be found by the direct application of the
Cagniard-de Hoop method. The Cauchy theorem is used to deform the original integration
paths of inverse transforms to Cagniard paths. The results yield

«(1u:)j(x.y.r) =h,jH(r-sjR)+H(r-ruj ) f'J GI(I1)G~j(I1)dll

- H(r - rbJ) f' G:(I1)G~J (11) dl1. ~ = x, y (56)

where the superscript c stands for the contribution of the Cagniard path, and the upper
limit of the integration is

S,j = (/-V)!l. (57)

The arrival times raj and rl>i are defined as la; = sll+sJr and rhj =s;l+sjr, respectively. The
expressions for G~j and Jr,j are
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(58)

(59)

where "1m" denotes the imaginary part, and the variable ~cj in (58) is a function of" given
by

(60)

Here r == (X~+y~)II~, (} == tan-I(y/x) are polar coordinates centered at (x, y) = (0, 0);
while R == [(X+/)2+ y2)1!2, 4J == tan- l [y!(x+t») centered at (x, y) = (-t, O:t). From the
viewpoint of wave propagation, the first term in (56) defines cylindrical waves which radiate
from (x, y) = (-t, O:t). It is identified as the solution of Lamb's problem with concentrated
force Fj acting on the free surface of half plane j at (x, y) = (-t, 0). The integrals in (56)
define cylindrical waves which radiate from the crack tip and are contributions from the
applied forces F l and F~. respectively. at (x. y) = (-t. O:t). The Heaviside functions in eqn
(56) clearly indicate that these cylindrical wavefronts are circles. while they are ellipses
in the physical anisotropic bimaterial due to the corresponding relations discussed in
Section 2.

For medium 2. y ~ 0, it is possible that the Cagniard path intersects. and therefore
must be deformed around. the branch cut. Moreover. the branch line integral encloses a......
simple pole. The branch line integral and the residual of the pole give extra contributions.
The regions influenced by these contributions arc -cos - I (SI/S2) < 0 ~ O. The residual only
contributes to F I and is expressed as

where

The starting and ending times or the pole contribution are defined as

( I ( ' 'II'lpl=SIX+)-Sl- S j) ·Y

lp2 = s2(r+lcosO).

The contributions from the branch line integral arc

where

(62)

(63)

(64)

(65)

(66)
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(67)

(68)

The integration limits in (66) are defined as

Shi = max (s,. s.. ~). j = 1.2 (69)

(70)

The arrival times are Ihl = I pl • and Ih~ = slx+s~/- (s~ -sf) l2y . Notice that (~h - 17) goes to
zero for a particular 17 between Shl and ShJ, and the first integral in (66) is in the sense of the
Cauchy principal value. From the viewpoint of wave propagation (61) and (66) describe
head waves generated by the mismatched bimaterial.

Detailed asymptotic analyses show that stress components a" (~ = x and y) possess
inverse square root behaviors near wavefronts of the direct waves. i.e. near I = sIR. while
they are continuous at I = Ih~ and Ipl but possess finite jumps at the rest of the wavefronts.
In the head wave region, the logarithmic behaviors' contribution to the branch line integrals
covers up the finite discontinuities at I = I~~ and Ih~' Hence the radiated stress fields in
medium I first experience an inverse square root behavior at I = sIR followed by two finite
jumps ~I and nl at I = I". and Ihl. respectively. The radiated stress fields in medium 2
are slightly complicated. Outside the heud region, they first experience three jumps ut I = I h I.

I,,! and lp! followed by an inverse square root behavior and a finite discontinuity at I = s~R

and Ih~' respectively. whereas for the head region. the logurithmic behaviors at I = I,,~ and
Ih~' rather thun the discontinuities, arc dominant. The constants D, (~ = X, y; P= a. h, p, h.
and j = I, 2), which denote the amount of discontinuities in stress components at: at time
I = IfI" are defined as

(71 )

(72)

(73)

(74)

where

aeh t (s~ -sf> l/~

at =; (s~-sr)li2cosO+SIsinO'

(75)

(76)

It is of interest to consider the stress components in polar coordinates. The time history
of ao: is quite different from those of the other stress components. In medium I. the transient
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response of t7H: experiences only an inverse square root behavior at t = sIR and then is
continuous elsewhere. The cancellation of the jump contributions from 17.<: and t7y: is owing
to the terms 9" in the expressions for B%j' :x = x, y. Similarly, t7H: in medium 2 experiences
jumps only at t = tnl and tp2 and an inverse square root behavior at sIR but is continuous
elsewhere.

8. RESULTS

There are numerous parameters in the present analysis. They may be subdivided into
material parameters, a geometric parameter, and loading parameters. The material par­
ameters are the mass density Pr and the shear moduli (Cik) J (i, k = 4. 5) of upper and lower
materials (j = I. 2). The geometric parameter is the characteristic length I. The loading
parameters are the magnitudes of applied forces F1 and F2•

The elastodynamic mode-III stress intensity factors of an interface crack in an aniso­
tropic bimaterial as defined by (13) and (47) depend on material parameters only for the
ratio of equivalent slownesses S2/SI' and the ratio of equivalent shear moduli Jl2/JlI' Figures
2-6 show the dimensionless stress intensity factors versus dimensionless time for various
values of S2/SI and jt2/Jtl' For S2/SI = 10 with anti-symmetric loadings (F1 = -F2 == F).
Fig. 2 shows KIII / K. as a function of t/(sl/) for various values of jt2/jtl' where K. = (2/n/) 1!2F

is the appropriate static value. It is noted that the stress intensity factors are almost constants
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Fig. 2. Mode-Ill stress intensity factor for anti-symmetric loading (F, = -Ft == F) and .ft/S, = 10.
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Fig. 3. Mode-III stress intensity factor for anti-symmetric loading (F, = - F: == F) and IJt!ll, = 0.8.
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with respect to the variation of t. and jump to the static value immediately at t = sl
Moreover. for t < S21 the larger 1121III is. the closer the stress intensity factor to the static
value. On the other hand. the smaller 1121III is, the smaller the stress intensity factor for
t < sl These are as one would expect. In fact. in the limiting case of Ilzilli ..... X) one would
expect that the solution in medium I for t < szl is almost the same as the solution for a
semi-infinite crack in a homogeneous unbounded domain (with only medium I) subjected
to anti-symmetric loading. while in the case of Ilzilli ..... 0 one would expect the solution to
be that of a semi-infinite crack in a homogeneous unbounded domain subjected to the
symmetric loading. For IlzIJlI = 0.8. Fig. 3 shows KilliK. as a function of (t/I-s,)/(sz-s.)
for various values of s2Is,. It is of interest to point out that for the cases of SZ/SI = l. Kill
jumps immediately to K. at t = sil as discussed in Section 6. This result cannot be included
in Fig. 3 due to the abscissa of the figure.

The analogous curves for symmetric loadings (F, = Fz := F) are shown in Figs 4-5,
except that Kill is now dimensionless by the appropriate static value K,. where

(77)

Since K, = 0 as 1121III = I. the dimensionless Kill for the case where 1l2/III ..... I is magnified
by larger factors than other cases. The variation of the history of Kill is very similar to that
for the case of anti-symmetric loading. except that the stress intensity factors now approach
the static values quite slowly. especially for Ilzl1LI ..... l. The semi-logarithmic plot of KilliK,
versus the logarithmic scale of tl(sl/) is shown in Fig. 6. It is noted that Kill approaches
only 85% of the static value for the case 1L211LI = 0.5 even when tl(s,/) = 100. It is also of
interest to point out that the stress intensity factors completely vanish only if the upper and
lower materials arc identical.

The radiated stress fields in an isotropic bimaterial arc the Slllll of (56), (61) and (66).
Those of the anisotropic bimaterial arc then deduced from (10) ,.( II). and their polar
components arc obtained accordingly. The time history of a,l: has fewer discontinuities and
fewer logarithmic singularities than those of aI:. a,,: and aT: as discussed in the previous
section for the corresponding isotropic bimaterial. The influenced region of the head waves
in the anisotropic bimaterial is 6h < 6 < O. where V. 6) arc the polar coordinates in the .if­
plane. The angle 6h is defined as .p and - (rr -.p) for s I - (l~~51 1Lh(.\·~ - si) II! ~ 0 and < 0,
respectively, where from (12)

(78)

Numerical calculations have been carried out for various values of ;11 and angle 6 for
both the cases of anti-symmetric and symmetric loadings. Only some typical results are
presented in the paper. As fixed parameters, we have chosen a carbon-epoxy composite
and a graphite-epoxy composite as media I and 2. respectively. Typical material properties
are p = 1.57 X to J kg m - J, C44 = 3.98 Gpa. Css = 6.4 Gpa. C~5 =O. for carbon-epoxy and
p= 1.6 X 10J kg m -J. CU = 6.55 Gpa. CH = 2.6 Gpa. C45 =O. for graphite-epoxy. Figures
7-10 show the dimensionless radiated stress fields versus dimensionless time. Since the order
of magnitude of a,,~ is less than that of an by one. double ordinate plots are used to
incorporate both components in the same figure. Figure 7 shows anlFand a8~/Fas functions
of tl(s./) at ;11 = I and (J = l(JhI/2, i.e. in medium I, for anti-symmetric loadings. The
analogous curves for ;11 = I, (J = Oh/2, i.e. in medium 2. are shown in Fig. 8. It is noted
that time histories of the radiated stress fields in medium I have less jumps than those in
the head wave region of medium 2. Moreover, jumps are consistent with the wavefront
analyses in the last section. The analogous curves for the cases of symmetric loadings at
positions ;11 = 1,0 = 16hl/2 and fJh/2. are shown in Figs 9-10. respectively.
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9. CONCLUSION

In this paper we have examined the c1astodynamic responses of a crack along the
interface of two anisotropic half planes. The responses are caused by a pair of anti-plane
point loadings acting on the crack faces but located away from the crack tip. The solution
was obtained by integral transforms together with the direct application of the Wiener­
Hopf techniq ue and the Cagniard-de Hoop method. which were previously believed not to
be appropriate. The stress intensity factors and the radiated stress fields were found.
Numerical results are presented for both the cases of anti-symmetric and symmetric point
loadings.

The results show that the transient mode-III stress intensity factors. KII .. are almost
constants with time. but experience discontinuities at a time I = 52/. which is the arrival
time of the cylindrical wave emitted from the point loading of the slower medium to the
crack tip. Moreover. Kill jumps to the appropriate static value at I = 521 in the case of anti­
symmetric loading. On the other hand. it approaches the appropriate static value quite
slowly in the case of symmetric loading. The results also show that the transient radiated
stress component a,l! has fewer discontinuities and fewer singularities than other stress
components. Meanwhile. the order of magnitude of all! is less than that of a;! by one.
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